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Oscillatory populations may exhibit a phase change in which, for example, a high^low periodic pattern
switches to a low^high pattern. We propose that phase shifts correspond to stochastic jumps between
basins of attraction in an appropriate phase space which associates the di¡erent phases of a periodic cycle
with distinct attractors. This mechanism accounts for two-cycle phase shifts and the occurrence of asyn-
chronous replicates in experimental cultures ofTribolium.
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1. INTRODUCTION

Many biological populations, when carefully studied in the
laboratory, display temporal cycling in numbers (Hassell &
May 1990). Examples include paramecia (Gause 1964),
blow £ies (Nicholson 1957), bean weevils (Utida 1957), and
£our beetles. Indeed, most continuously cultured labora-
tory populations of the £our beetle Tribolium exhibit
sustained oscillations (Costantino&Desharnais1991).

Noise is always present in population data and prevents
oscillatory data from being exactly periodic. Any mathe-
matical property of periodicity (phase, amplitude,
average, etc.) can be a¡ected by stochastic perturbations.
In this paper, we are concerned with the relationship
between stochasticity and phase. In particular, we
propose one possible causal mechanism for the phenom-
enon of phase switching in oscillating data.

½ 2 presents time-series data illustrating the phenom-
enon of phase switching in a variety of contexts. ½ 3 uses
the famous Ricker model to exemplify the mathematical
theory proposed for a possible explanation of phase
shifting. In ½ 4, we apply the theory to a multivariate map
forTribolium dynamics and use it to explain speci¢c occur-
rences of phase switching and asynchronous replicates in
laboratory cultures ofTribolium.

2. OBSERVED PHASE SWITCHING IN POPULATION

DATA

A common phenomenon observed in oscillating labora-
tory cultures of Tribolium is a change of phase in which,
for example, a high^low periodic pattern c̀hicken-steps'

(skips) to a low^high pattern. Phase switching often leads
to asynchronous replicates.
Phase shifts occur in many of the Tribolium castaneum

time-series published in Desharnais & Costantino (1980).
Figure 1a displays larval numbers for two of the control
replicates. The cultures were shown to be oscillating with
period two (Dennis et al. 1995). Phase shifts occur in both
replicates, eventually leading to asynchrony.

A phenomenologically similarTribolium example comes
from an experiment conducted using a di¡erent strain in
another laboratory under signi¢cantly di¡erent experi-
mental protocols. Figure 1b plots larval numbers for two
replicate time-series reported in Costantino et al. (1995).
These cultures were also shown to be in a two-cycle
regime (Dennis et al. 1997). One of the replicates
appearing in ¢gure 1b shifts phase, and at that particular
time the replicates become asynchronous.
An example with a di¡erent animal can be seen in the

data recorded by Gause (1964; tab. 3). Figure 1c presents
time-series data for two replicate Paramecium caudatum
cultures grown separately. Both replicates show two-cycle
oscillations followed by several phase shifts.

A ¢nal example illustrates the phenomenon of phase
switching in data cycling with period three.Three replicate
time-series forTribolium castaneum, as reported in Costantino
et al. (1997), are shown in ¢gure 1d. All three replicate
cultures display three-cycle (high^low^low) behaviour,
and two of the replicates shift phase. By the end of the time-
series, all three replicates are oscillating out of phase.

3. THEORETICAL PHASE SWITCHING IN

POPULATION MODELS

In this section we use a discrete univariate map to
introduce and illustrate the mathematical ideas central to
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our explanation of phase switching. For simplicity, we
restrict our attention to cycles of period two.

The Ricker map xt+1� f (xt) given by

xt�1 � bxte
ÿcxt ,

is awell-known population model which generates cycles at
many choices of parameters b and c. For example, when
b�9 and c�1, the two-cycle sequence x0�1.099, x1�3.296,
x2�1.099, x3�3.296, ..., is a solution (to four signi¢cant
¢gures). Initial conditions near x0�1.099 generate solution
sequences which converge to this two-cycle; hence the two-
cycle solution is labelled locally stable. The out-of-phase
sequence x0�3.296, x1�1.099, x2�3.296, x3�1.099, ..., is
also a locally stable two-cycle solution.

The set of points (1.099, 3.296) on the real line is an
àttractor' for the map; both of the two-cycle solutions
mentioned above `live' on this attractor. (Note that,
mathematically speaking, the attractor is not a solution of
the Ricker map; the attractor is just a set of two points,

not a sequence of points.) The set of initial conditions
which generate solutions converging on either of the two-
cycles on this attractor is denoted by B and is called the
basin of attraction for the attractor. A solution starting in
B will remain in B throughout time.
The basin of attraction B is composed of two note-

worthy subsets: the subset B1 of initial conditions that
generate solutions converging to the ¢rst two-cycle (`up'
on odd-numbered t), and the set B2 of initial conditions
that generate solutions converging to the second, out-of-
phase two-cycle (`up' on even-numbered t). In this sense,
each of the two-cycle solutions have their own `basin of
attraction', even though neither cycle is an àttractor' by
mathematical de¢nition.
There is a classical way, in fact, to view the two cycles

of opposite phase as separate mathematical attractors in
order to bring to bear the powerful tools and concepts of
a dynamical systems theory. The idea is to look at the
population at every other time-step by constructing the
so-called c̀omposite' map (e.g. see May & Oster 1976).
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Figure 1. (a) Tribolium castaneum
two-cycle data from Desharnais &
Costantino (1980). Replicate A
(circles) changes phase at week 8.
Replicate B (squares) changes phase
at weeks 8 and 28. After week 28, the
replicates are asynchronous.
(b) Tribolium castaneum two-cycle data
from Costantino et al. (1995).
Replicate A (squares) does not
change phase. Replicate D (circles)
changes phase at week 20. After
week 20, the replicates are
asynchronous. (c) Paramecium
caudatum two-cycle data from Gause
(1957). Numbers of individuals per
0.5 cm3 are plotted against the
number of days elapsed, with
transient data (days zero to eight)
omitted. Replicate no. 2 (circles)
exhibits phase changes at days 14
and 16. Replicate no. 4 (squares)
exhibits phase changes at days 13
and 17. (d ) Tribolium castaneum three-
cycle data from Costantino et al.
(1997). Transient weeks zero to eight
are omitted. All the replicates
display three-cycle behaviour (high^
low^low). Replicate no. 23 (squares)
does not shift phase. Replicate no. 3
(circles) changes phase once, at week
16. Replicate no. 18 (triangles)
changes phase at week 26, at which
time it becomes synchronized with
replicate no. 3. At week 36, replicate
no. 18 changes phase once more.
From week 36 onwards, all three
replicates remain out of phase. (In
fact, this situation persists until the
end of the experiment, at week 80.)



For the Ricker model, the population density xt+2 at time
t+2 is projected from xt by two successive applications of
the Ricker map

xt�2 � f (xt�1) � f ( f (xt)):

This is the expression we would use to calculate the popu-
lation density at every second time-step. If we rede¢ne a
unit of time to be two of the original units of time, we
have the composite Ricker map xt+1�f( f(xt)):
xt�1 � b�bxteÿcxt �eÿc�bxteÿcxt �:

Given an initial condition x0, the solution sequence of
the composite map corresponds to every other step of the
solution sequence of the Ricker map. For example, the
locally stable two-cycle solution x0�1.099, x1�3.296,
x2�1.099, x3�3.296, ..., of the Ricker map corresponds
to a locally stable constant solution x0�1.099, x1�1.099,
x2�1.099 (i.e. a locally stable ¢xed point xe1�1.099) of
the composite Ricker map. Similarly, the locally stable
two-cycle solution x0�3.296, x1�1.099, x2�3.296,
x3�1.099, ..., of the Ricker map corresponds to a locally
stable ¢xed point xe2�3.296 of the composite map. The
composite Ricker map thus has two separate ¢xed-point
attractors {xe1} and {xe2}.

The set B1 of initial conditions leading to composite
map solutions which converge to the ¢xed-point xe1, is the
basin of attraction for the attractor {xe1}. The basin of
attraction B2 of {xe2} is de¢ned similarly. A solution of the
composite map starting in B1 remains in B1 throughout
time. A similar statement holds for B2.

If, however, noise were added to the system, a solution
of the composite map lying in basin B1 might be stochasti-
cally bumped into basin B2 at some point in time. In
terms of the original Ricker map, this would correspond
to a solution approaching the ¢rst two-cycle being
stochastically bumped into an approach to the second
(out-of-phase) two-cycle solution. If the solution was
originally in phase with the ¢rst two-cycle, such a
stochastic perturbation would, at least in the long run,
cause a change in the phase of oscillation.

For example, consider the stochastic Ricker map

xt�1 � bxte
ÿcxt��Et ,

where Et is a normal random variable with a mean zero
and variance one (Dennis & Taper 1994). Figure 2 shows
one stochastic-realization switching (composite) attractor
basins and temporal phase at time t�7 and thereafter
oscillating out of phase with the deterministic two-cycle
solution.

The general concept of stochastic basin jumping is an
explanation we propose for the phenomenon of phase
switching in time-series data.

4. THE THEORY APPLIED TO EXPERIMENTAL DATA

In this section we apply our proposed theoretical expla-
nation of phase switching to the control treatments (see
¢gure 1a) reported in Desharnais & Costantino (1980).
Brie£y, the experimental protocol was as follows. Cultures
of Tribolium castaneum, homozygous for the corn-oil sensi-
tive allele (cos/cos), were initiated with 64 young adults, 15
pupae, 20 large larvae, and 70 small larvae. Each

population was contained in a half-pint milk bottle with
20 g of corn-oil media (90% wheat £our, 5% brewer's
yeast, and 5% liquid corn oil) and kept in an unlit incu-
bator at 33þ1 ³C and 56þ11% relative humidity. Every
two weeks all stage classes, except eggs, were censused
and all stage classes, including eggs, were placed in fresh
media. This procedure was followed for 38 weeks. A
complete listing of the census data is given in tab. 2 in
Desharnais & Liu (1987).

(a) The LPA model
The discrete stage-structured `LPA' Tribolium model of

Dennis et al. (1995) has successfully explained and
predicted nonlinear phenomena in a variety of contexts,
including the transitions between dynamic regimes (such
as equilibria, two-cycles, three-cycles, invariant loops,
and chaos), multiple attractors, and saddle in£uences
(Costantino et al. 1995, 1997, 1998; Cushing 1996, 1998;
Dennis et al. 1995, 1997; Desharnais et al. 1997; Henson et
al. 1999). We now use the LPA model to explain the
chicken-steps observed in Desharnais & Costantino
(1980) and Dennis et al. (1995).

A stochastic version of the LPA model is given by the
equations

Lt�1 � bAt exp (ÿ ceaAt ÿ celLt) exp (E1t),

Pt�1 � Lt(1ÿ �) exp (E2t),

At�1 � �Pt exp (ÿ cpaAt)� At(1ÿ �a)� exp (E3t),
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Figure 2. Ricker map time-series. Comparison of a
deterministic two-cycle solution x0�3.296, x1�1.099,
x2�3.296, x3�1.099, ..., (solid line) with a stochastic
realization (dashed line) having variance ��0.2 and
x0�3.296. In both cases, b�9 and c�1. x�3.296 is a ¢xed-
point solution (solid circles) of the composite Ricker map, and
corresponds to even time-steps of the deterministic Ricker
two-cycle solution. Even time-steps of the stochastic realiza-
tion are marked with open circles if they lie in the basin of
attraction of the ¢xed-point attractor (3.296) of the composite
map, and open triangles if they lie in the basin of attraction of
the ¢xed-point attractor (1.099) of the composite map. Note
the change of basin between t�4 and t�6. The phase shift in
the stochastic time-series (marked by an arrow) corresponds
to the jump between basins. After the phase shift, the
stochastic time-series is asynchronous with the deterministic
two-cycle.



where Lt denotes the number of (feeding) larvae, Pt denotes
the number of pupae (non-feeding larvae, pupae, and
callow adults), and At denotes the number of adults. The
discrete time interval is two weeks. The coe¤cient b40
denotes the average number of larvae recruited per adult
per unit of time in the absence of cannibalism, 05�a,�l51
are the adult and larval probabilities of dying from causes
other than cannibalism, and the exponentials
exp(7ceaAt7celLt) and exp(7cpaAt) represent the prob-
abilities that individuals survive cannibalism in one unit of
time, with c̀annibalism coe¤cients' cel , cea , cpa40.
Et�[E1t, E2t, E3t] is a random vector assumed to have a
trivariate normal distribution with mean vector zero and
variance^covariance matrix S. E0, E1, ..., are assumed to
be uncorrelated. We refer to the deterministic skeleton of
the stochastic LPA model (obtained by setting Et�0) as the
`LPA model'. Relevant mathematical theorems concerning
properties of the LPA model appear in Henson & Cushing
(1997). Local stability results for both the LPA model and
its composite are obtained using standard linearization
techniques (Cushing1998; Guckenheimer & Holmes1983).

In Dennis et al. (1995), the maximum likely parameters
estimated from the control replicates reported in Deshar-
nais & Costantino (1980) were b�11.6772, �l�0.5129,
cpa�0.0178, cea�0.0110, cel�0.0093, and �a�0.1108, with

S �
0:2771 0:0279 0:0098
0:0279 0:4284 ÿ0:0081
0:0098 ÿ0:0081 0:0111

0@ 1A:

At these parameter values, the LPA model admits an
unstable ¢xed point (rounded to the nearest beetle) of
[L, P, A]�[124, 60, 97].

This ¢xed point is stable in some directions and unstable
in other directions (i.e. it is a saddle point; see Cushing et al.
(1998)). The LPA model also predicts two locally stable
two-cycle solutions: one determined by the stage vectors
[L0, P0, A0]�[18, 158, 106], [L1, P1, A1]�[325, 9, 118], and
the other given by the phase-shifted cycle [L0, P0, A0]
�[325, 9, 118], [L1, P1, A1]�[18, 158, 106].
Because they `live' on the same attractor ([18, 158, 106],

[325, 9, 118]), the two di¡erent two-cycle solutions listed
above are indistinguishable when plotted in [L, P, A]
space (phase space). However, these solutions do deter-
mine di¡erent phases for each component. For example,
the ¢rst cycle determines a low^high oscillation in the
larval component L, while the second determines a high^
low oscillation in L. In order to di¡erentiate between
these out-of-phase two-cycle solutions as separate attrac-
tors with distinct basins of attraction, we turn to the
composite of the LPA model.

(b) The composite LPA model
The c̀omposite LPA model' (the composite map, in

which the solutions correspond to even time-steps of solu-
tions of the LPA model) identi¢es the above two-cycle
solutions as two di¡erent ¢xed point attractors given by
the stage vectors [L, P, A]4 � [18, 158, 106], and
[L, P, A]*�[325, 9, 118].
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Figure 3. LPA model predictions.
(a) Deterministic model time-series with
the initial condition [70, 35, 64]
approaches a stable two-cycle. The
composite time-series consists of the even
time-steps (solid triangles). (b) A time-
series realization of the stochastic LPA
model with the initial condition
[70, 35, 64] su¡ers phase shifts at t �7
and t �15. (c) In composite phase space,
the corresponding deterministic model
orbit (solid triangles) approaches the
composite ¢xed point attractor
[L, P, A]4�[18, 158, 106], remaining
well to the left of the basin boundary.
The basin-boundary surface is indicated
by cross-sections in the P�0, 60, 120 and
180 planes. The cross on the boundary
marks the saddle point, and the solid
circle represents the composite ¢xed-point
attractor [L, P, A]*�[325, 9, 118].
(d ) In composite phase space, the
stochastic time-series phase shifts appear
as crossings of the basin boundary. Open
triangles represent triples in the basin
of [L, P, A]4�[18, 158, 106]; open
circles represent triples in the basin of
[L, P, A]*�[325, 9, 118].



(Note the subscripts 4 and * are used to label the two
attractors.) The saddle point of the LPA map (labelled
with the subscript +) is also a saddle point [L, P, A]+
� [124, 60, 97], of the composite map.
The basins of attraction of the two stable ¢xed points

of the composite LPA model are sets in three-dimensional
phase space and are computed numerically. In this parti-
cular example, the basins are fairly simple sets.
Throughout a large portion of phase space, they are sepa-
rated by a two-dimensional surface (containing the
saddle) which forms part of the `basin boundary'. Initial
conditions on one side of the boundary lead to composite
map solutions which approach [L, P, A]4 , while initial
conditions on the other side generate composite map
solutions approaching [L, P, A]*. Solutions starting on
the basin boundary near the saddle point tend to the
saddle [L, P, A]+ (locally, the boundary is the `stable
manifold' of the unstable saddle). Indeed, near the saddle,
the stable manifold of this unstable entity forms the
watershed geometrical feature of phase space. Near the
origin, however, the basin boundary becomes much more
complicated; but this will not concern us.

(c) Model predictions and data
Figures 3a and 3b exhibit the larval stage time-series of

both the deterministic prediction of the LPA model, and

a stochastic realization of the stochastic LPA model using
the initial condition [70, 35, 64] of the experiment
described above. In ¢gures 3c and 3d appear corre-
sponding composite phase-space plots of every other step
in the time-series.

The deterministic time-series approaches the two-cycle
[L0, P0, A0]�[18, 158, 106], [L1, P1, A1]�[325, 9, 118],
and, in composite phase space, the corresponding solu-
tion of the composite LPA map approaches the ¢xed
point [L, P, A]4�[18, 158, 106].

The stochastic time-series, on the other hand, shifts
phase at time t�7 and again at t�15. In composite phase
space, the phase changes in this example occur exactly
when the basin boundary is crossed.

Figure 4 presents data from the experiment using the
same format as ¢gure 3. As the LPA model predicts,
phase switching occurs in the time-series data precisely when the
data cross the model predicted basin boundary in composite phase
space.

5. DISCUSSION

Populations often exhibit temporal oscillations, and
sometimes these oscillations shift phase. We o¡er an
explanation for phase shifts by means of a mix of
stochastic and deterministic elements. Namely, we
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Figure 4. Data. Replicates A (a) and
(c) and B (b) and (d ) from Desharnais
& Costantino (1980) plotted as time-
series and as orbits in composite phase
space using the same format as in
¢gure 3. Open triangles represent
triples in the basin of [L, P, A]4
�[18, 158, 106] (solid triangle); open
circles represent triples in the basin of
[L, P, A]*�[325, 9, 118] (solid
circle). Boundary crossings in phase
space correspond to time-series phase
shifts.



hypothesize that phase shifts may correspond to stochastic
jumps between basins of attraction in an appropriate
phase space which associates the di¡erent phases of a
periodic cycle with distinct attractors. We showed how
this explanation accounts for phase shifts observed in
two-cycle oscillations ofTribolium populations, as reported
in Desharnais & Costantino (1980). In this case, phase
shifts correspond exactly to stochastic jumps between the
basins of attraction of two stable ¢xed points of the ¢rst
composite of the deterministic LPA model.

More generally, for discrete autonomous models, p-cycle
attractors of minimal period p admit p distinct phases, and
hence correspond to p distinct (out-of-phase) attracting
p-cycle solutions. Each of these p solutions corresponds to
a di¡erent ¢xed-point attractor of the (pÿ1)-composite
map (i.e. the map composed with itself pÿ1 times). If
noise is added to the system, a solution of the composite
map lying in a basin of attraction of one of the ¢xed
points can be stochastically bumped into one of the
other pÿ1 basins. In terms of the original map the corre-
sponding solution, which should approach a certain
p-cycle is stochastically bumped into an approach of an
out-of-phase p-cycle. If the solution is originally in phase
with the ¢rst cycle, such a stochastic perturbation causes
(at least in the long run) a change in the phase of oscil-
lation. The data in ¢gure 1d provide an example of
p̀�3'-cycle phase shifting, although the basins of the
second-composite map are not analyzed here.
Deterministic attractors alone do not account for the

phase-switching mechanism proposed. Unstable invariant
sets such as basin boundaries and saddle points, along
with stochasticity, play a key role. Deterministic attractors
and unstable invariant sets de¢ne, in composite phase
space, the geometry that determines the behaviour of
stochastic time-series.
Finally, our explanation for phase switching may be

further tested by experimental investigation of new
hypotheses generated by the model. For example, the
frequency of phase changes should be determined by the
strength of the stochasticity relative to basin sizes and
shapes. Riddled or marbled basins with fractal bound-
aries might lead to perpetual phase shifting, disguising
deterministic in£uences and making data £uctuations
appear completely random. Even when the basins are
simple, oscillations of small amplitude could contain so
many phase shifts that the data would appear to be at
noisy equilibrium. (This could occur, for example,
because the attractors are close together in composite
phase space, allowing frequent stochastic basin crossings.)
On the other hand, oscillations of a large amplitude
would be likely to su¡er few phase shifts, depending on
the size and location of the basin boundary. Speci¢c
model predictions such as these could be located in para-
meter space and tested in the laboratory.
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