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periodic forcing. A periodically-forced, stage-structured mathematical model pre-
dicted the transient and asymptotic behaviors ofTribolium (flour beetle) popula-
tions cultured in periodic habitats of fluctuating flour volume. Predictions included
multiple (2-cycle) attractors, resonance and attenuation phenomena, and saddle in-
fluences. Stochasticity, combined with the deterministic effects of an unstable ‘sad-
dle cycle’ separating the two stable cycles, is used to explain the observed transients
and final states of the experimental cultures. In experimental regimes containing
multiple attractors, the presence of unstable invariant sets, as well as stochastic-
ity and the nature, location, and size of basins of attraction, are all central to the
interpretation of data.

c© 1999 Society for Mathematical Biology

1. INTRODUCTION

Successful prediction of a population’s response to a fluctuating environment is
rare, even in the simplified realm of the laboratory. Indeed, few controlled exper-
imental studies have addressed the effect of time-variant factors, and most mathe-
matical models are autonomous (do not depend explicitly on time).

An exception is the laboratory experiment conducted byJillson (1980) and the
subsequent model-based explanation proposed byCostantinoet al. (1998). For a
different interpretation of the Jillson experiment seeNisbet and Gurney (1981) and
Renshaw (1991). Jillson placed beetles in volumes of flour that alternated between
32 g and 8 g every two weeks. The control cultures remained in a constant volume
of 20 g. Jillson found that total population numbers in the periodically-fluctuating
environment were more than twice those in the constant environment, even though
the average flour volume was the same in both cases.

To explain this phenomenon, the discrete LPATribolium model ofDenniset al.
(1995, 1997) andCostantinoet al. (1995, 1997) was modified byHenson and Cush-
ing (1997) andCostantinoet al. (1998) to account for the periodic flour volume.
Cannibalism between life cycle stages is the nonlinear mechanism driving flour
beetle dynamics in these experiments (Parket al., 1970). Habitat size was incor-
porated into the model by the hypothesis that all rates of cannibalism are inversely
proportional to the volume of the culture medium. The ‘periodic LPA model’ cor-
rectly described the larger total population size in the 32–8 g periodic habitat. It
also correctly described the phase relationships and transient dynamics observed in
the Jillson data. The periodic LPA model explained the increased average biomass
observed in the 32–8 g habitat as a type of resonance in which the inherent biolog-
ical oscillation resonates with the periodic habitat (Costantinoet al., 1998). In this
sense, we are referring to ‘resonance’ as an increase in theaverageof an output
oscillation in response to a tuning of theamplitudeof the input oscillation.
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In fact, discrete mathematical models predict fairly general resonance and multi-
ple attractor phenomena in the presence of periodic forcing.Henson (1999) shows
that populations which cycle in the absence of time-dependent factors can develop
multiple attracting oscillatory final states in the advent of periodic forcing. Some of
the multiple final states may resonate with the periodic forcing in the above sense,
while others may attenuate, depending on the phase difference between the input
and output oscillations. The prospect of multiple stable states has long been known
to be a prediction of various nonlinear population models (May, 1977), but to date
few convincing examples of multiple stable states have been documented (Petraitis
and Latham, 1999).

In a specific application of this general theoretical forecast, we used the periodic
LPA model to generate new predictions testable in the laboratory, and then carried
out the indicated experiments. When the relative amplitude of oscillating flour vol-
ume in the periodic LPA model was set at 40% to simulate a 28–12 g alternating
habitat, the model predicted multiple attracting final states: two different 2-cycles
out-of-phase with each other and differing in average magnitude of animal num-
bers. We tested this model forecast in the laboratory by placing and maintaining
beetle cultures in the different (model predicted) basins of attraction of the two
locally stable 2-cycles.

We were able to identify the effects of the multiple attractors in beetle population
numbers. Furthermore, natural stochasticity combined with the effects of an unsta-
ble ‘saddle cycle’ separating the two stable cycles greatly influenced the transients
and final states of the experimental populations, making the unstable saddle central
to the interpretation of the data.

Section2 illustrates, by means of a simple univariate Ricker-type map, the gen-
eral phenomenon of multiple attractors predicted by periodically-forced models. In
Section3, we introduce the multivariate periodically-forced LPA model for stage-
structuredTribolium dynamics as a specific application of the theory. In Section4
we analyse the model’s predictions of multiple attractors and saddles and outline
the design of experiments. Section5 describes the protocol for two experiments
constructed to test the model’s predictions. Sections6 and7 present the results of
the experiments. In Section8, we briefly discuss some features of the modeling
methodology and summarize the project.

2. MULTIPLE ATTRACTORS AND PERIODICALLY -FORCED M ODELS

We first illustrate the general mathematical theory of multiple attractors in period-
ically-forced models by means of a discrete univariate Ricker-type map

xt+1 = f0(xt) = bxte
−cxt + (1− µ)xt

which predicts the density of individualsxt+1 in a population at censust + 1 given
the density of individualsxt at censust . Hereb > 0 is the inherent per capita
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recruitment rate per census interval at small population sizes, ande−cxt represents
the fractional reduction of recruitment due to density-dependent effects. Also, 0≤

µ ≤ 1 is the fraction of individuals expected to die during one census period. When
µ = 1, the map becomes the well-known Ricker model.

This model is autonomous, and predicts 2-cycles at many values of its parame-
ters. For example, ifb = 40, c = 1, andµ = 0.93, the sequencex0 = 1.035,
x1 = 14.78, x2 = 1.035, x3 = 14.78, . . . is a 2-cycle solution (to 4 significant
figures). Initial conditions nearx0 = 1.035 lead to solutions approaching this
2-cycle; hence, the 2-cycle is ‘locally stable’. The phase-shifted cyclex0 = 14.78,
x1 = 1.035, x2 = 14.78, x3 = 1.035, . . . is also a locally stable 2-cycle solu-
tion. The set of values{1.035,14.78} is an ‘attractor’ for the map. Both 2-cycles
‘live’ on this attractor. The set of initial conditionsx0 which generate solutions
converging to either of the 2-cycles is the ‘basin of attraction’ for the attractor.

Suppose periodic-forcing is introduced, for example into recruitment, so that the
birth rate oscillates with relative amplitude 0< α < 1 and averageb:

xt+1 = fα(t, xt) = b[1+ α(−1)t ]xte
−cxt + (1− µ)xt .

If the relative amplitudeα is increased slightly from zero, for example toα =
0.01, the first 2-cycle listed above is no longer a solution, but is ‘perturbed’ into
a locally stable 2-cycle solutionx0 = 1.045, x1 = 14.92, x2 = 1.045, x3 =

14.92, . . . of the periodically-forced model. This 2-cycle has the same phase as its
parent cycle, but has a larger average (is ‘resonant’). Similarly, the second 2-cycle
solution of the autonomous model is perturbed into a locally stable 2-cycle solution
x0 = 14.64, x1 = 1.025, x2 = 14.64, x3 = 1.025, . . . of the periodically-forced
model. This perturbed cycle also preserves the phase of the parent cycle, but has
smaller average (is ‘attenuant’). It is easy to check that the phase shifts of the
2-cycle solutions of the periodically-forced model are not themselves solutions.

In terms of attractors, the single attractor{1.035,14.78} of the autonomous model
has been perturbed into two different attractors{1.045,14.92} and{1.025,14.64}
of the periodically-forced model. Although the attractor of the autonomous model
is associated with two solutions of different phases, the attractors of the periodi-
cally-forced model are associated with unique solutions of opposite phases.

In general, if an autonomous discrete model having a stablep-cycle solution
is subjected to small amplitudep-periodic forcing, thep-cycle attractor will split
into p p-cycle attractors associated withp different phases (Henson, 1999). That
is, mathematical models predict that a population which oscillates with minimal
period p in the absence of periodic forcing will developp out-of-phase attracting
oscillatory final states in the advent of small amplitude forcing of minimal period
p. Although the theory only guarantees multiple attractors for ‘small’ amplitude
forcing, they often persist at larger amplitudes as well.

We close this section with two further remarks. First, the Ricker-type model
illustrates another typical, though somewhat less general, phenomenon connected
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to the one discussed above. The autonomous model has a unique equilibriumx =
c−1ln(b/µ) ≈ 3.762 (that is, a constant solution sequencex0 = 3.762,x1 = 3.762,
x2 = 3.762, . . .) which can be found by solving the fixed point equationx =
bxe−cx

+ (1− µ)x. The equilibrium is unstable at the given parameter values of
b, c, andµ. The periodically-forced model does not admit an equilibrium solution.
However, when the relative amplitude is perturbed fromα = 0 to α = 0.01, the
unstable equilibriumx = 3.762 of the autonomous model is perturbed into an
unstable 2-cycle solutionx0 = 3.785, x1 = 3.738, x2 = 3.785, x3 = 3.738, . . .
of the periodically-forced model. Figure1(a) illustrates the values of all three
perturbed cycles as functions of the amplitude parameterα. As α increases, the
unstable cycle and the attenuant stable cycle of the same phase annihilate each
other in a ‘saddle-node bifurcation’, while the resonant stable cycle persists for all
α < 1. The existence of such an unstable cycle and saddle-node bifurcation will
be important to our specific multivariate application.

Second, all the above 2-cycles can be studied as fixed points of the composite
mapxt+1 = fα(1, fα(0, xt)). Given an initial condition, the orbit generated by the
composite map corresponds to every other step of the orbit generated by the map
xt+1 = fα(t, xt) (seeHensonet al., 1998). Thus, in the context of the composite
map,x = 1.035 andx = 14.78 are both locally stable fixed points whenα = 0,
while x = 3.762 is an unstable fixed point. Ifα is increased from zero toα = 0.01
in the composite map, the first stable fixed point is perturbed into a new stable
fixed pointx = 1.045, the second stable fixed point is perturbed into a stable fixed
point x = 14.64, and the unstable fixed point is perturbed into an unstable fixed
point x = 3.785. In terms of attractors, the two attractors{1.035} and{14.78} of
the composite map withα = 0 are perturbed into the two attractors{1.045} and
{14.64} of the composite map whenα is increased toα = 0.01. In our specific
multivariate application, the composite model will be helpful in presenting and
evaluating model predictions.

In the next two sections we apply this general theory of multiple attractors and
periodicity to a specific validated multivariate population model (the LPA model),
and generate the predictions tested in the laboratory.

3. THE M ODEL

The autonomous LPA model is given by the equations

L t+1 = bAt exp(−ceaAt − celL t)

Pt+1 = (1− µl )L t (1)

At+1 = Pt exp(−cpaAt)+ (1− µa)At

whereL t denotes the number of (feeding) larvae,Pt denotes the number of pu-
pae (nonfeeding larvae, pupae, and callow adults), andAt denotes the number of
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Figure 1. Model predictions. (a) 2-cycle solutions of the periodically-
forced Ricker-type map, shown as functions of amplitudeα. Whenα = 0,
there are two stable 2-cycles which are simply time shifts of each other,
and an unstable fixed point. Asα increases from zero, one of the two
locally stable 2-cycles increases in average (solid lines), while the other
decreases in average (dashed lines). The unstable fixed point is perturbed
into an unstable 2-cycle (dotted lines). The attenuant stable cycle and the
unstable cycle annihilate each other in a saddle-node bifurcation, while
the resonant stable cycle persists for allα < 1. (b) Larval component
of 2-cycle solutions of the periodic LPA model. The unstable 2-cycle is
not shown. At approximatelyα = 0.42 the attenuant stable cycle and the
unstable cycle annihilate each other in a saddle-node bifurcation, while
the resonant stable cycle persists for allα < 1. The arrows locate the
experimental treatments atα = 0, α = 0.40, andα = 0.60. (c) Same as
Fig. 1(b) except shown for total population size.
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adults. The discrete time interval is 2 weeks. The coefficientb > 0 denotes the
average number of larvae recruited per adult per unit time in the absence of can-
nibalism, 0< µl , µa < 1 are the larval and adult probabilities of dying from
causes other than cannibalism, and the exponentials represent the probabilities that
individuals survive cannibalism one unit of time, with ‘cannibalism coefficients’
cel, cea, cpa > 0.

Model (1) is deterministic. The incorporation of stochastic fluctuations is criti-
cal for casting nonlinear population models as testable hypotheses (Denniset al.,
1995); nevertheless, stochasticity brings a new layer of conceptual questions. Dif-
ferent types of mechanisms produce different patterns of variability. In partic-
ular, two broad classes of stochastic mechanisms important to populations have
been widely discussed: environmental stochasticity and demographic stochasticity
(May, 1974; Shaffer, 1981). In either case, the stochastic process for the vectorNt

of stage numbers can be approximated as a nonlinear autoregressive model of the
form

Xt = h(Xt−1)+ Et

whereXt is the vector of state variables (e.g., abundance of the stages, possibly
transformed) at timet , the functionh(·) is the ‘skeleton’ (Tong, 1990) representing
the deterministic trends that would affect the population in the absence of stochas-
ticity, Et is a vector random variable having normal distribution with mean zero
and variance-covariance matrix6, andE1, E2, . . . are uncorrelated. In the case of
environmental stochasticity, the transformationXt = [lnL t , lnPt , ln At ]

′ is appro-
priate. In the case of demographic stochasticity, one would use the transformation
Xt =

[√
L t ,
√

Pt ,
√

At

]′
for the nonlinear autoregressive model approximation.

Stochastic models have emergent properties that can be substantially different
from the deterministic skeleton. Noise continually stirs the system, knocking tra-
jectories away from the attractors of the skeleton. We consider two examples. First,
transient phenomena, such as a visitation to the neighborhood of an unstable equi-
librium, eventually reoccur. Sometimes an unstable point (or other invariant sets
such as an unstable cycle or fractal set) resides on a reduced-dimensional stable
manifold, so that trajectories near the manifold tend to move toward the unstable
point before diverging toward a stable attractor (Cushinget al., 1998). Thus, trajec-
tories in the stochastic system may display occasional ‘fly-bys’ of repelling regions
of phase space, followed by fresh transient returns to the attracting region. Second,
populations sometimes exhibit temporal oscillations and often these oscillations
shift phase. Hensonet al. (1998) hypothesized that phase shifts correspond to
stochastic jumps between basins of attraction in an appropriate phase space which
associates the different phases of a periodic cycle with distinct attractors. Later in
this paper (see Section6.2.3), we shall use a stochastic model and a similar stochas-
tic jump hypothesis to explain the transients observed in the experimental cultures.

The LPA model has been validated by means of a number of experiments, and
has been used successfully to predict transitions between equilibria, periodic cy-



1128 S. M. Hensonet al.

cles, invariant loops, and chaos, as well as saddle phenomena and phase switching
in population cycles (seeCostantinoet al., 1995, 1997, 1998; Cushinget al., 1996,
1998; Denniset al., 1995, 1997; Desharnaiset al., 1997; Beniotet al., 1998; Hen-
sonet al., 1998).

Henson and Cushing (1997) andCostantinoet al. (1998) modified the autono-
mous LPA model (1) to account for the periodic flour volume. Since Jillson al-
ternated the flour between 32 g and 8 g every 2 weeks, we introduced period-2
forcing into the model. In particular, we assumed the cannibalism ratesc′el, c′ea and
c′pa in the periodically-forced version of the model would be inversely proportional
to flour volumeVt = Vave(1+ α(−1)t) by means of

c′el =
celVave

Vt
c′ea =

ceaVave

Vt
c′pa =

cpaVave

Vt
(2)

wherecel, cea andcpa are the constant cannibalism rates in the average flour volume
Vave, and the parameter 0< α < 1 is the relative amplitude of the flour volume
oscillation.

This assumption regarding cannibalism rates was mechanistically derived from
the fact that cannibalism occurs by random collision between the mobile and im-
mobile life stages, and was supported in laboratory experiments (seeCostantinoet
al., 1998).

The periodic LPA model was obtained by utilizing the variable cannibalism rate
hypothesis (2) in model (1):

L t+1 = bAt exp

(
−ceaAt − celL t

1+ α(−1)t

)
Pt+1 = (1− µt)L t (3)

At+1 = Pt exp

(
−cpaAt

1+ α(−1)t

)
+ (1− µa)At

for relative amplitude 0< α < 1. Whenα = 0, the periodic LPA model (3)
reduces to the autonomous LPA model (1).

We did not directly parametrize the periodic LPA model (3) with data from fluctu-
ating habitats. Instead, we used a parametrization of the autonomous LPA model (1)
obtained from a constant habitat historical data set (Costantinoet al., 1997). Nu-
merical simulations based on this parametrization revealed the existence of robust
multiple attracting 2-cycles at increased values ofcel andµa. Extensive numerical
exploration led us to decide to experimentally manipulate or ‘target’ three parame-
ters

ctarget
ea = 0.01 ctarget

el = 0.1 µtarget
a = 0.1. (4)

The experimental protocol used to obtain the target values is described in detail in
Section5. With the maximum likelihood (ML) parameter estimates

b = 6.598, µl = 0.2055, and cpa = 0.004700 (5)
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(Costantinoet al., 1997) and the three target value parameters, the periodic LPA
model predicted the multiple attractors as described in the next section.

4. MODEL PREDICTIONS /DESIGN OF EXPERIMENTS

For the parameter values (4) and (5), the LPA model(α = 0) predicts a stable
2-cycle whose values are given by the stage vectors (rounded to the nearest beetle)

[L0, P0, A0] = [162,0,243]

[L1, P1, A1] = [0,129,219].

The shift

[L0, P0, A0] = [0,129,219]

[L1, P1, A1] = [162,0,243]

by one time step is also a stable 2-cycle solution. Furthermore, whenα = 0 the
model has an unstable saddle equilibrium

[Le, Pe, Ae] = [23,19,110].

Asα > 0 is perturbed away from zero, that is, as habitat periodicity is introduced
into the model, the first stable 2-cycle decreases in average, while the second in-
creases in average. These out-of-phase locally stable cycles of greater and smaller
averages are henceforth referred to as ‘resonant’ and ‘attenuant’ 2-cycles, respec-
tively. The unstable saddle equilibrium becomes an unstable saddle 2-cycle with
the introduction of periodic forcing. Atα0 ' 0.42 the attenuant stable 2-cycle and
the unstable 2-cycle annihilate each other in a saddle-node bifurcation, while the
resonant stable 2-cycle persists for allα < 1 [Fig. 1(b) and (c)].

The model therefore predicts three asymptotic regimes as indexed by the relative
amplitudeα of the habitat fluctuation: forα = 0, the stable cycle and its time shift
of opposite phase; for 0< α < α0, the locally stable resonant and attenuant cycles;
and forα > α0, the stable resonant cycle.

In thefirst experimentwe chose to study three relative amplitudesα = 0, 0.4, and
0.6 with initial conditions[L IC , PIC , AIC ] = [150,200,150] and[150,0,150]. In
thesecond experiment, which is a further experimental evaluation of the geometry
of the multiple attractors, we focused on theα = 0.4 habitat with initial condi-
tions[92,0,142], [120,0,80], and[250,0,50]. A detailed account of the model’s
predictions and the design of experiment follows. Tables1 and2 summarize the
model-predicted asymptotic stage structures according to initial condition and forc-
ing amplitude.
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Table 1. The design of the first experiment has two initial stage structures
and three flour volume amplitudes. The model-predicted asymptotic stage
structures and the assigned replicate labels are given for each of the six
treatments.

Relative amplitude,α, of the flour volume,V , oscillation

Initial α = 0 α = 0.4 α = 0.6
stage V = 20 g Vt = 28, 12, . . . Vt = 32,8, . . .
structure
L IC = 150 L0 = 162 L1 = 0 L0 = 0 L1 = 227 L0 = 0 L1 = 259
PIC = 200 P0 = 0 P1 = 129 P0 = 180 P1 = 0 P0 = 206 P1 = 0
AIC = 150 A0 = 243 A1 = 219 A0 = 306 A1 = 340 A0 = 350 A1 = 388

[replicates 1,10a, 14] [replicates 3, 9a, 18] [replicates 4a, 11, 16]

L IC = 150 same L0 = 92 L1 = 0 same
PIC = 0 as P0 = 0 P1 = 73 as
AIC = 150 above A0 = 142 A1 = 128 above

[replicates 6a, 12, 17] [replicates 5, 8a, 13] [replicates 2a, 7, 15]

aReplicates continued beyond week 76.

Table 2. The design of the second experiment has three initial stage struc-
tures for the alternating habitat with relative amplitudeα = 0.4. The
model-predicted asymptotic stage structures and the assigned replicate la-
bels are given for each of the three treatments.

L IC = 120 L0 = 92 L1 = 0
PIC = 0 P0 = 0 P1 = 73
AIC = 80 A0 = 142 A1 = 128

[replicates 21, 26, 29, 30]

L IC = 250 L0 = 0 L1 = 227
PIC = 0 P0 = 180 P1 = 0
AIC = 50 A0 = 306 A1 = 340

[replicates 24, 25, 28, 31]

L IC = 92 L0 = 92 L1 = 0
PIC = 0 P0 = 0 P1 = 73
AIC = 142 A0 = 142 A1 = 128

[replicates 22, 23, 27, 32]

Note that the orbits of nonautonomous models (of which the periodic LPA model
is one) should not be visualized in(L , P, A) phase space since a given point in
space can give rise to two different orbits depending on the starting time. However,
the firstcompositeof the periodic LPA model is autonomous, and its phase portrait
facilitates visualization of the model predictions whenα > 0. The orbits of the
composite model correspond to the even time stepst = 0,2,4, . . . of the orbits
of the periodically-forced model. We will present periodic LPA model predictions
as time series, while the composite predictions (every other step) will be shown in
composite phase space.



Multiple Attractors, Saddles, and Population Dynamics in Periodic Habitats1131

4.1. Constant 20 g habitat(α = 0)(α = 0)(α = 0). Whenα = 0, both the initial conditions
[150,200,150] and [150,0,150] give rise to LPA model orbits which approach
the 2-cycle

[L0, P0, A0] = [162,0,243]

[L1, P1, A1] = [0,129,219].

L-stage numbers are predicted to oscillate as shown in the LPA model time series
in Fig. 2(a).

The composite model has two stable fixed points[162,0,243] and[0,129,219].
In composite phase space, both orbits of the composite map approach the fixed
point [162,0,243] of the composite map [Fig.2(a)].

4.2. Alternating 28–12 g habitat(α = 0.4)(α = 0.4)(α = 0.4). Whenα = 0.4, the periodic LPA
model admits a locally stable resonant 2-cycle solution

[L0, P0, A0] = [0,180,306]

[L1, P1, A1] = [227,0,340],

a locally stable attenuant 2-cycle solution

[L0, P0, A0] = [92,0,142]

[L1, P1, A1] = [0,73,128]

of opposite phase, and an unstable saddle 2-cycle solution

[L0, P0, A0] = [64,3,121]

[L1, P1, A1] = [4,51,111].

The resonant and attenuant locally stable 2-cycle solutions and the unstable sad-
dle 2-cycle solution of the periodic LPA model correspond to locally stable ‘up-
per’ and ‘lower’ fixed points[0,180,306] and [92,0,142], and a saddle fixed
point [64,3,121] of the composite map. Numerical investigations indicate that
the basins of attraction of the two stable fixed points are ‘simple’; the boundary is
a ‘smooth’ surface in(L , P, A) space. The saddle lies on the basin boundary, and
the stable manifold of the saddle acts as the boundary between the two basins of
attraction.

Table3 lists the eigenvalues and eigenspace basis vectors for the linearizations of
the composite map about each of its three fixed points. The linear analysis, coupled
with numerical simulations, lead to the following model predictions.
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Figure 2. First experiment. Model predictions (including transients) for
each of the six treatments in the first experiment, shown inL-stage time
series and composite phase space. The squares correspond to times when
flour volume is high. The circles in phase space represent equilibria of the
first composite map. (a) Whenα = 0, both initial conditions are in the
same basin of attraction and lead to a 2-cycle with larvae oscillating in-
phase with flour volume. In composite phase space, both orbits tend to the
same fixed point. (b) Whenα = 0.4, the initial condition[150,200,150]
is in the basin of attraction of the resonant 2-cycle, with larvae out-of-
phase with the habitat. The initial condition[150,0,150] is in the basin
of attraction of the attenuant 2-cycle, with larvae oscillating in-phase with
the habitat. In composite phase space, the first orbit tends to the upper
fixed point, while the second approaches the lower fixed point. (c) When
α = 0.6, both initial conditions lead to the resonant 2-cycle, with larvae
out-of-phase with the habitat. This 2-cycle has the largest average of all.
In composite phase space, both orbits approach the (upper) fixed point. At
this value ofα, the lower fixed point no longer exists.
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Table 3. Eigenvalues and eigenspace basis vectors for linearizations of the
composite LPA model about its three fixed points.

Eigenvalues and corresponding eigenspace basis vectors

[0.00,180.36,305.91] λ = 0; [0.03,1.00,−0.53]
λ = 0.31± 0.36i ; [0.00, 0.00,1.00], [0.00,1.00,−0.44]

[92.29,0.37, 142.33] λ = 1.23× 10−5; [0.00,1.00,−0.69]
λ = 0.57± 0.44i ; [1.00,−0.04,0.25], [−0.76,−0.01,1.00]

[63.60,2.84, 120.79] λ = 2.66; [1.00,−0.08,0.15]
λ = 0.70; [0.23,−0.06,1.00]
λ = −1.87× 10−4; [−0.01,1.00,−0.74]

In the first experiment, the initial conditions[150,200,150] and [150,0,150]
were chosen in the basins of attraction of the resonant and attenuant stable 2-cycles,
respectively. Figure2(b) presents theL-stage periodic LPA model time series pre-
dictions for these initial conditions. The orbit originating at[150,200,150] oscil-
lates out-of-phase with the habitat (i.e., highL-stage numbers in low flour volume)
and attains a larger average, while the orbit starting at[150,0,150] oscillates in-
phase with the habitat (i.e., highL-stage numbers in high flour volume) and has a
depressed average.

In the context of the composite model, these initial conditions are in the basins of
the upper and lower stable fixed points, respectively. Figure3(a) presents the three
fixed points of the composite map, the basin boundary, and the composite model
orbits generated by the two initial conditions of the first experiment. The orbit
starting with initial condition[150,200,150] quickly approaches theL = 0 plane,
and then spirals more slowly into the upper fixed point. The orbit does not approach
the lower fixed point or the saddle. The orbit with initial condition[150,0,150],
however, experiences the influence of the stable manifold of the saddle. It follows
the basin boundary and flies by the saddle before moving to approximately the
P = 0.37 plane and spiraling into the lower fixed point.

In the second experiment, the initial condition[92,0,142] was placed directly
on the model-predicted attenuant 2-cycle, and so experimental cultures initiated at
[92,0,142] are predicted to remain on the attenuant 2-cycle. The initial condition
[250,0,50] was placed in the basin of attraction of the resonant 2-cycle, but close
to the boundary basin. In composite phase space, the model orbit flies around
the basin boundary and by the saddle before approaching theL = 0 plane and
spiraling into the upper fixed point [Fig.3(b)]. The initial condition[120,0,80]
was placed in the basin of the attenuant cycle. In composite phase space, the model
orbit spirals into the lower fixed point as show in Fig.3(b).

4.3. Alternating 32–8 g habitat(α = 0.6)(α = 0.6)(α = 0.6). Whenα = 0.6, both the initial con-
ditions [150,200,150] and [150,0,150] give rise to periodic LPA model orbits
which approach the resonant 2-cycle

[L0, P0, A0] = [0,206,350]
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Figure 3. Model predictions for the composite periodic LPA model with
α = 0.4, shown in composite phase space. The large circles represent
the two equilibria of the composite map. The saddle fixed point (cross)
lies on the basin boundary. (a) First experiment. The orbit starting at
[150,200,150] (squares) tends to the upper fixed point. The orbit starting
at [150,0,150] (small circles) follows the basin boundary, flies by the sad-
dle, then approaches the lower fixed point. (b) Second experiment. The
orbit starting at[250,0,50] (squares) follows the boundary and flies by
the saddle before approaching the upper fixed point. The orbit starting at
[120,0,80] (small circles) spirals into the lower fixed point.

[L1, P1, A1] = [259,0,388].

L-stage numbers are predicted to oscillate out-of-phase with the habitat and attain
the largest average [Fig.2(c)].

In composite phase space, both orbits of the composite map approach the fixed
point [0,206,350] of the composite map [Fig.2(c)].

5. EXPERIMENTAL PROTOCOL

Theα = 0 or constant 20 g habitat is commonly used in our laboratory and the
projected 2-cycles are well documented (Moffa and Costantino, 1977; Desharnais
and Costantino, 1980; Jillson, 1980; Costantinoet al., 1995, 1997). Theα = 0.6
alternating 32–8 g habitat was used in the experiment conducted byJillson (1980)
and recently analysed byHenson and Cushing (1997) andCostantinoet al. (1998).
Our design of experiment includes treatments at bothα = 0 andα = 0.6 as
controls. Theα = 0.4 alternating 28–12 g habitat sequence admits the multiple
attractors and is the centerpiece of the experiments reported in this paper.

The mathematical analysis of the periodic LPA model was the guide to the con-
duct of the experiments. In the first experiment, we tested the model predictions at
α = 0 andα = 0.6, and in particular, tested the multiple attracting 2-cycle predic-
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tion atα = 0.4, using the two initial conditions[150,200,150] and[150,0,150]
(as identified in the previous section) for each of the three habitat regimes. There
were three replicates in each of the six treatments for a total of 18 cultures. The
RR strain ofTribolium castaneumHerbst was used. The animals were held in
120 ml sample bottles and maintained in a dark incubator at 31◦C. All cultures
were counted every 2 weeks for a total of 76 weeks. Some cultures were discon-
tinued at week 76 while others were maintained through week 140. Following
census, and the appropriate experimental manipulation, all of the animals (except
eggs) were placed in new media and returned to the incubator.

In the second experiment, which followed the first experiment, we initiated three
more treatments in the 28–12 g habitat(α = 0.4) with the initial conditions
[120,0,80], [92,0,142], and[250,0,50]. Each treatment in the second experi-
ment consisted of four replicates for a total of 12 new cultures. The experimental
protocol remained the same. The second study ran for 64 weeks.

The target value for the adult-on-egg cannibalism rate wasctarget
ea = 0.010 [see

(4)], while the maximum likelihood (ML) parameter estimate wascea = 0.01211.
Therefore, the target value may be written asctarget

ea = cea+g = 0.01211−0.00211.
Similarly, the target value for the larva-on-egg cannibalism rate wasctarget

el = 0.10,
while the parameter estimate wascel = 0.01199, producing the decomposition
ctarget

el = cel + h = 0.01199+ 0.08801. [Note that the ML parameter estimates
given above ofcea = 0.01211 andcel = 0.01199 were the best available at the start
of the experiment. These estimates differ slightly from the valuescea = 0.01155
andcel = 0.01209 given inCostantinoet al. (1997).]

At the estimated values ofcea andcel, the model predicts

Lpredicted
t+1 = bAt exp

(
−ceaAt − celL t

1+ α(−1)t

)
new larvae at timet + 1, whereL t and At are the numbers of larvae and adults
counted at timet , respectively. At the target values ofctarget

ea andctarget
el , the model

predicts

L target
t+1 = bAt exp

(
−ceaAt − celL t

1+ α(−1)t

)
exp

(
−gAt − hLt

1+ α(−1)t

)
= (Lpredicted

t+1 )exp

(
0.00211At − 0.08801L t

1+ α(−1)t

)
new larvae at timet + 1.

We manipulated the egg cannibalism rates at their target values by manipulating
larval recruitment. IfLobserved

t+1 larvae were counted at timet + 1, then the number
of larvaeL t+1 returned to the culture after thet + 1 census was computed with the
equation

L t+1 = (L
observed
t+1 ) exp

(
0.00211At − 0.08801L t

1+ α(−1)t

)
.
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The exponential factor was the adjustment made to the observed number of larvae
at time t + 1. Both the number of adults and larvae at timet were part of this
calculation. Note that the adjustment factor could result in an increase or decrease
in the observed larvae at timet + 1. Suppose, for example,α = 0.4 with L t =

65, Pt = 2, andAt = 139 beetles counted in the 28 g habitat. Then the larval
adjustment factor is 0.0207. If at the following census the observed number of
L-stage animals were 49, then the number of small larvae returned to the culture
would be(49)(0.0207) = 1 larva. Since we knew the adjustment factor from
the data at timet , laboratory preparations could be made to haveL-stage animals
available at timet + 1.

The target value of the adult death rate wasµ
target
a = 0.10. This adult death rate

is similar to that observed in unmanipulated laboratory cultures of beetles (Dennis
et al., 1995). To realize this value, adult mortality was manipulated by removing
or adding adults at the time of a census to make the total number of adults that
died during the interval (adjusted for the number of natural deaths) equal to 10%
of the adults alive at timet . To counter the possibility of genetic changes in life-
history characteristics, beginning at week 4 and continuing every month thereafter,
the adults returned to the populations after the census were obtained from separate
stock cultures maintained under standard laboratory conditions.

Following a census, the animals were placed in 120 ml sample bottles with the
‘volume’ of standard media allocated by weight: withα = 0 a constant 20 g, with
α = 0.4 an alternating sequence ofinitially 28 g then 12 g, and withα = 0.6 an
alternating sequencestarting with 32 gfollowed by 8 g of media.

6. RESULTS OF THE FIRST EXPERIMENT

We now turn our attention to a comparison of the model predictions and the
data. It is important to note thatthe model was not re-parametrizedwith the new
data. Indeed, the new data are compared to predictions based on the parameters (4)
and (5) estimated from an independent historical data set. While it is true that
L-stage recruitment was manipulated so as to attain ‘target’ values ofcea andcel,
the amount of manipulation necessary was calculated using the parameter values
from the independent data set. Thus, the results have in no way been enhanced by
‘model fitting’, but rather represent the empirical test of predictions of the periodic
LPA model.

6.1. Constant 20 g habitat(α = 0)(α = 0)(α = 0). The observedL-stage time series of 140
weeks for two representative replicates in the constant 20 g habitat are given in
Fig. 4(a) and (b). Larval numbers oscillated as predicted by the model in Fig.2(a).

Figure4(a) and (b) also present every other census triple[L , P, A] in composite
phase space. In this context the two solid circles represent the two stable predicted
fixed points[162,0,243] and[0,129,219] of the composite LPA model. The data
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Figure 4. Larval time series data and composite phase space plots for
two replicates with different initial conditions but cultured in the con-
stant 20 g habitat,α = 0. In the composite map the two full circles are
the stable fixed points. (a) Replicate #6 had an initial stage structure of
[L , P, A] = [150,0,150]. (b) Replicate #10 had an initial stage structure
of [L , P, A] = [150,200,150]. Both time series are for 140 weeks.

cluster around the fixed point[162,0,143] as forecast in Fig.2(a).

6.2. Alternating 28–12 g habitat(α = 0.4)(α = 0.4)(α = 0.4). For the intermediate habitat se-
quence of 28–12 g, the periodic LPA model predicts a 2-cycle of depressed average
as well as an opposite phase 2-cycle of enhanced average. We examine each local
attractor in turn.

6.2.1. Stable resonant 2-cycle.Figure5 displays theL-stage time series data
for the three replicates cultured in the 28–12 g habitat, and started in the basin
of attraction of the resonant 2-cycle.L-stage numbers in all three replicates are
consistent with the periodic LPA model predictions of Fig.2(b) by: (1) displaying
the predicted transient pattern seen in the first 10 weeks; (2) oscillating out-of-
phase with the habitat; and (3) having an average larger than that of the cultures in
the constant habitat.

The corresponding composite phase space plots are placed opposite theL-stage
time series in Fig.5. The three cultures proceed directly to theL = 0 plane
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Figure 5. Larval time series data and composite phase space plots for the
three replicates cultured in the 28–12 g habitat,α = 0.40, and started in the
basin of attraction of the resonant 2-cycle at[L , P, A] = [150,200,150].
The first composite map has two locally stable fixed points (full circles
labeled A and B) and an unstable saddle fixed point (full circle labeled
C) with a strongly repelling unstable manifold (solid line) and a two-
dimensional stable manifold (rectangle) which lies on the basin boundary.

as predicted, where they oscillate in the vicinity of the upper fixed point of the
composite map. There was no evidence of any trend toward the lower fixed point.
Note that our parameters, obtained as they were from independent historical data,
do not predict well the exact location of the upper fixed point.

6.2.2. Stable attenuant 2-cycle.Figure6 displays theL-, P- andA-stage time
series data for the three replicates cultured in the 28–12 g habitat, and started in
the basin of attraction of the attenuant 2-cycle. The composite phase space plots
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Figure 6. Time series data for the three replicates cultured in the 28–12 g
habitat,α = 0.40, and started in the basin of attraction of the attenuant
2-cycle at[L , P, A] = [150,0,150]. Replicates #5 and #13 (with a time
series length of 76 weeks) remained close to the lower attractor until week
22 whenL-stage numbers of 452 and 493, respectively, clearly marked the
transition to the resonant 2-cycle attractor. Replicate #8 (with a time series
length of 140 weeks) remained near the attenuant 2-cycle until week 66
whenL-stage numbers were 612 (star).

of each replicate are shown in Fig.7. The three cultures displayed the expected
pattern inL-stage numbers [see Fig.2(b)] for the first 14 weeks. The cultures were
in-phasewith the habitat which means that high numbers ofL-stage animals were
observed when the cultures were placed into the (high) 28 g habitat.

During weeks 16 to 20 unanticipated observations were recorded. In two repli-
cates the relationship of high larval numbers in the high volume habitat was re-
versed by week 20. In the third replicate the pattern was altered at week 62.

The reversal of phase is recorded in the data (Figs6 and 7). At week 16, in
both replicates #5 and #13, a modest change from the model prediction was seen:
L-stage numbers were smaller in the 28 g habitat than recorded earlier in the time
series. Two weeks later (week 18),L-stage numbers which were predicted to be
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Figure 7. Composite phase space plots of the data (open circles) of the
three replicates which were started in the basin of attraction of the lower
fixed point. The first composite map has two locally stable equilibria (full
circles labeled A and B) and an unstable equilibrium (full circle labeled
C) with a strongly repelling unstable manifold (solid line) and a two-
dimensional stable manifold (rectangle) which lies on the basin boundary.
(a) Replicate #5. (b) Replicate #13. (c) and (d) Two perspectives of com-
posite phase space of the replicate #8 data.

very small (0, 1 or 2 animals) in the 12 g habitat were 22 and 21, respectively. At
week 20 the change in the association betweenL-stage numbers and habitat size
had occurred. In the 28 g habitat, rather than the forecast of approximately 70
L-stage animals these replicates each had a single larva. At week 22, large cohorts
of L-stage beetles were recorded in both replicates (452 and 493, respectively),
followed 2 weeks later by an increase inP-stages and then 2 weeks later adult
numbers increased to 274 and 212 beetles, respectively. The cultures were now out-
of-phase with the habitat. Both replicates #5 and #13 had moved to the resonant
attractor.

On the other hand, replicate #8 stayed near the attenuant 2-cycle until week 62
when a pattern similar to that just described occurred (Figs6 and7). At week 70,
replicate #8 had 414 adults: a fourfold increase over the number of adults at
week 68.
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6.2.3. Stochastic jumps between basins of attraction.The sudden time series
shift observed in all three replicates initialized in the basin of attraction of the
attenuant cycle is predicted by a stochastic version of the periodic LPA model.
Note that, in composite phase space, replicates #5 and #13 flew by the saddle [as
predicted by the deterministic model, Fig.3(a)], but then quickly escaped along
the unstable manifold of the saddle to finally oscillate in theL = 0 plane (Fig.7).
Replicate #8 lingered near the lower fixed point and the saddle much longer before
following this pattern (Fig.7). We hypothesize that each replicate, at different
times in their histories, was stochastically ‘bumped’ into the basin of attraction
of the resonant cycle. In composite phase space, this is equivalent to replicates
stochastically ‘jumping’ from the basin of the lower fixed point of the composite
map into the basin of the upper fixed point.

To investigate this hypothesis we introduce astochasticperiodic LPA model:

L t+1 = bAt exp

(
−ceaAt − celL t

1+ α(−1)t
+ E1t

)
Pt+1 = L t(1− µl ) exp(E2t)

At+1 =

[
Pt exp

(
−cpaAt

1+ α(−1)t

)
+ (1− µa)At

]
exp(E3t).

The variablesE1t , E2t , andE3t are random noise variables having a multivariate
normal distribution with mean zero and variance-covariance matrix

∑
=

 0.3411 0.0731 −0.0017
0.0731 0.2488 0.0003
−0.0017 0.0003 0.0002


estimated simultaneously with the parameters obtained from historical constant
habitat data [see (4) and (5)]. The noise variables represent the unpredictable de-
partures of the observations from the deterministic skeleton due toenvironmental
causes.

The attenuant attractor of the deterministic periodic LPA model is locally stable.
However,stochasticmodel orbits starting in the basin of attraction of the attenuant
attractor eventually move to the resonant attractor. For example, in Fig.8(a) a
stochastic orbit started at the experimental initial condition[150,0,150] jumps
into the basin of the resonant attractor at week 20 with a pattern similar to that
of replicates #5 and #13 (Figs6 and7). Another stochastic realization [Fig.8(b)]
jumps basins at week 62; compare this behavior with that of replicate #8 (Figs6
and7).

One might expect the stochastic orbits eventually to return to the attenuant at-
tractor, and so on. Interestingly, however, in 50 000 stochastic simulations, orbits
arriving (or starting) in the basin of the resonant attractornevermoved to the atten-
uant attractor. We will explore this phenomenon in detail in another paper.
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Figure 8. Larval time series and phase space plots of two stochastic peri-
odic model orbits in the 28–12 g habitat,α = 0.40, with the initial condi-
tion [L , P, A] = [150,0,150]. (a) An orbit that changes its phase to the
resonant cycle at week 20. (b) A model orbit that ‘jumps’ stochastically to
the resonant attractor at week 62.

How long does it take for a stochastic orbit initialized in the basin of the attenuant
attractor to move to the resonant attractor? Figure9 presents a frequency histogram
of ‘jump times’ calculated from 50 000 stochastic orbits. The ‘jump time’ in these
calculations is the time at which the orbit first changes its phase from that of the at-
tenuant 2-cycle to that of the resonant 2-cycle. The mean jump time is 18.55 weeks
which is close to the jump time of replicates #5 and #13. Although replicate #8,
with its jump time of 62 weeks, provides strong evidence for the existence of the
attenuant 2-cycle, it is seen from the model’s point of view as an outlier. Note that
all of the 50 000 model orbits moved to the resonant cycle by week 96.

6.3. Alternating 32–8 g habitat(α = 0.6)(α = 0.6)(α = 0.6). The observedL-stage time series of
140 weeks for two representative replicates in the alternating 32–8 g habitat are
given as time series in Fig.10. Both initial stage structures led to beetle numbers
which oscillated out-of-phase with the habitat, as predicted in Fig.2(c). The aver-
age total population sizes were larger than the average total population sizes in the
other habitat sequences, as predicted by the model. However, the model predicted
an average total population size of 602 animals, while the six replicates averaged
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Figure 9. Frequency histogram of the ‘jump times’ calculated from 50 000
stochastic orbits started at the initial condition in the experiment for the
attenuant attractor([L , P, A] = [150,0,150]). Mean jump time was
18.55 weeks.

472 animals after the removal of 4 weeks of transients. Note that theL-stage num-
bers in both replicates #2 and #4 follow the transient patterns predicted in Fig.2(c).

Composite phase space plots of the[L , P, A] triples from replicates #2 and #4
are also presented in Fig.10. The predicted 2-cycle of the periodic LPA model
appears as a fixed point of the composite map. Again, the even time data cluster
below the predicted fixed point attractor.

7. RESULTS OF THE SECOND EXPERIMENT

The second experiment was conducted to further clarify the geometry of the mul-
tiple attractors whenα = 0.4. Beetle cultures were placed at three different initial
conditions in the alternating 28–12 g habitat. In Fig.3(b) the model-predicted
deterministic orbits for each initial condition appear in composite phase space.

7.1. = [250, 0, 50]]Initial condition [L, P, A] = [250, 0, 50]. Figure11 shows
the composite phase space plots for each of the four replicate cultures started in
the basin of attraction of the resonant attractor but far from the final state. Each
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Figure 10. Larval time series data and composite phase space plots for
two replicates with different initial conditions but cultured in the 32–8 g
habitat,α = 0.60. The full circle in composite phase space represents
the equilibrium of the first composite map. (a) Replicate #2 had an initial
stage structure of[L , P, A] = [150,0,150]. (b) Replicate #4 had an initial
stage structure of[L , P, A] = [150,200,150]. Both time series are for
140 weeks.

culture moved around the basin boundary of the two attractors and then toward
the forecast final state. The patterns displayed by the experimental cultures were
remarkably similar to the deterministic model-predicted pattern [see Fig.3(b)].
Note that replicate #31 [Fig.11(d)] moved past the lower attractor as predicted, but
looped back toward the basin separatrix before going to the final state. In the entire
project, no culture started in the basin of the resonant cycle moved to the attenuant
cycle. The ‘loop’ observed in replicate #31 was as close as any culture came to
moving from the resonant to the attenuant attractor.

7.2. = [120, 0, 80]]Initial condition [L, P, A] = [120, 0, 80]. Cultures started with
120 larvae, 0 pupa, and 80 adults were predicted to bein the basin of attraction of
the attenuant attractor and therefore were expected to approach that attractor. As
noted in the composite phase space plots in Fig.12, this was not observed. The
final state of all four replicates was the resonant attractor. However, the replicates
took different routes to the final state. Replicates #26 and 29 [Fig.12(b) and (c)]
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Figure 11. Composite phase space plots of the data from the four replicates
in the second experiment which were started in the basin of the upper fixed
point at[L , P, A] = [250,0,50].

were apparently pushed stochastically very early (week 20) into the basin of the
resonant cycle and then the cultures followed a path quite similar to that noted for
the replicates initiated withL = 250, P = 0, A = 50 (see Fig.11). On the other
hand, replicate #21 stayed close to the attenuant cycle for 40 weeks while replicate
#30 remained close to the predicted attractor for 52 weeks [Fig.12(a) and (d)].

7.3. = [92, 0, 142]]Initial condition [L, P, A] = [92, 0, 142]. The initial condition
L = 92, P = 0, A = 142 placed the cultures directlyon the model-predicted
attenuant cycle. The deterministic forecast is that the cultures willremainon the
attractor. As seen in Fig.13, three of the four replicates moved off the attrac-
tor quickly (week 20 approximately). Once off the attractor, replicates #22, 23
and 27 followed the model-predicted orbit to the resonant attractor. Replicate #32
[Fig. 13(d)] did hover about the attenuant attractor for 48 weeks before following
a now familar path to the resonant attractor.

8. DISCUSSION

Nearly 40 years ago, theideathat populations might resonate in response to envi-
ronmental fluctuations was stated bySlobodkin (1961, p. 155): ‘. . . populations are
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Figure 12. Composite phase space plots of the data from the four replicates
in the second experiment which were started in the basin of the lower fixed
point at[L , P, A] = [120,0,80].
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Figure 13. Composite phase space plots of the data from the four replicates
in the second experiment which were started on the lower fixed point at
[L , P, A] = [92,0,142].
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feedback systems and that any such systems will of necessity act as a resonator, se-
lectively responding to the fluctuations in the environment according to their time
periodicity, the primary resonance being in the period of approximately one gener-
ation. The most obvious test of this concept will be a direct laboratory study in a
controlled environment’. Aware of Slobodkin’s speculation,Oster and Takahashi
(1974) added an analysis of a mathematical model that confirmed the possibility
of resonant cycles. Unaware of Slobodkin’s comment,Jillson (1980) conducted a
needed ‘laboratory study’.

As noted in the Introduction, the periodic LPA model was used inCostantinoet
al. (1998) to explain the increased average biomass observed in the 32–8 g habitat
of theJillson (1980) experiment as a type of resonance phenomenon in which the
inherent biological oscillation resonates with the periodic habitat. The intervals of
large flour volume with reduced cannibalism rates boost the larval recruitment rate,
while the intervals of small flour volume with increased cannibalism rates depress
the larval recruitment rate. This explanation also holds for the stable resonant
2-cycle of enhanced average predicted (and now observed) in the intermediate 28–
12 g habitat. However, the model prediction of the stable attenuant 2-cycle of
depressed average in the 28–12 g habitat sequence came as something of a surprise,
and presented us with an excellent opportunity for further experimentation.

The treatments placed in the previously studied 20 g constant habitat and 32–
8 g habitat regimes were ‘controls’ for our investigation of the 28–12 g habitat.
We viewed the resonant and attenuant locally stable 2-cycles predicted in the 28–
12 g habitat as multiple attractors and started treatments in each basin of attraction.
Fortunately, the basins were ‘simple’, with ‘smooth’ boundaries; had they been
been riddled or marbled with fractal boundaries, stochastic effects might have made
it impossible to locate the multiple attractors (Nusse and Yorke, 1996; Neubert,
1997). Furthermore, the predicted cycles differed not only in average, but also in
phase thus increasing the possibility of unambiguous empirical detection.

The data from the intermediate 28–12 g habitat treatments evidenced the exis-
tence of the resonant and attenuant 2-cycles, as well as the saddle cycle, with tran-
sient behavior conforming to the linearized predictions of Section4.2. The data
from the ‘bracketing’ treatment regimes of constant 20 g and 32–8 g habitats also
displayed the features of the model predictions.

We determined that habitat periodicity can lead to multiple attracting states in
population numbers, and that the advent of environmental fluctuation can enhance
or depressaverage population numbers. In particular, habitat periodicity in this
experiment led to multiple stable 2-cycles of enhanced and depressed average. It
was also clear that natural stochasticity combined with the effects of an unstable
‘saddle cycle’ separating the two stable cycles greatly influenced the transients
and final states of the experimental populations. Thus, in experimental regimes
containing multiple attractors, the presence of unstable invariant sets, as well as
stochasticity and the nature, location, and size of basins of attraction, are all central
to the interpretation of data.
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